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The Nonlinear Coherent Coupler

STEPHEN M. JENSEN

Abstract—This paper discusses the nonlinear coherent coupler
(NLCC), a device useful for optical processing, but not bistable,

This device utilizes the coherent interaction of two optical wave-
guides placed in close proximity. Because of the evanescent field over-
lap, these waveguides periodically exchange power. Nonlinear inter-
actions modify the exchange of power and lead to strongly nonlinear
transmission characteristics,

INTRODUCTION

ECENTLY, there has been great interest in the possibility

of using optical devices for ultra-high-speed data process-

ing. Many devices have been studied; of these the ones receiv-

ing the greatest attention are bistable optical devices [1].

Bistability, however, is not necessary in many logic operations.

This paper discusses the nonlinear coherent coupler (NLCC),
a device useful for optical processing, but not bistable.

This device, first described in 1980 [2], utilizes the coherent
interaction of two optical waveguides placed in close prox-
imity. Because of the evanescent field overlap, these wave-
guides periodically exchange power. Nonlinear interactions
modify the exchange of power and lead to strongly nonlinear
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transmission characteristics which may be utilized in optical
processing applications,

Fig. 1 shows a schematic of the NLCC dev1ce The device
is simply two waveguides placed adjacently so-that they will
couple to one atiothér. The nonlinear material covers the
region of interaction between the two waveguides. This non-
linearity may be due to the intrinsic nonlinearity of the sub-
strate material, nonlinearity induced by doping of the sub-
strate material, or by overlayers of highly nonlinear materials.

We have obtained an analytic solution for the NLCC re-
sponse. To begin the analysis, we assume that the response of
the medium, evident as a polarization, may be considered in
two parts. The unperturbed linear portion P, =4n(e- 1) F
contains contributions from a single isolated waveguide. The
perturbing polarization P’ contains linear contributions from
a waveguide placed in close proximity and nonlinear contribu-

tions due to the nonlinear response of the material. Using
Maxwell’s equations, in Gaussian units, one finds that
c W = -
VzXEt(r)"'l;vt { thHt(r)} ;Ht(")
N
=4V X —Pz(r) D

and
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Fig. 1. Schematic of an integrated optic nonlinear coherent coupler.
- - - .C = - P W=
Ve X Hy(r) - 1 Ve X {VtXEt(")}'”;Et(")

=-idn ‘z" Py @)
where ¥, and ¥, represent the transverse and longitudinal
components of the curl operator, £,(7) and Hy(r) are the
transverse components of the electric and magnetic fields, ¢ is
the speed of light in vacuum, and alt the fields are assumed to
be harmonic at frequency w. In (1) and (2) the perturbing
polarization P'(r) appears as a source term which modifies
the fields E(7) and H(r). Using the standard coupled mode
technique of expansion inh ideal modes [3]-[5], (1) and (2)
may be reduced to the form

2, {0a,(2)/0z} 2 X E{(r) = 40V, X — Pz(r) 3

3, {0a,(2)/0z} 2 X HY(F)=-idn ‘;"F;G) ()
where » represents the »th ideal mode of the waveguide, a,(z)
is the amplitude of the yth mode, Z is a unit vector along the
longitudinal (propagation) direction, and the sum extends over
all bound and radiation modes of the structure. To proceed,
we must utilize the orthonormality relation for the waveguide
modes
2n

fdxdyz E,(r)XH”(r)*-——POS,,,, 5)
where the asterisk indicates a complex conjugate, P, is the
normalization power, and §,,, is the Kronecker delta function.
By using the orthonormality relation, (3) and (4) may be
reduced to

. w — )
-ida,(z)/oz =P—fdx dy E¥(ry* - P'(r). ©)
o

By using (6) one may derive the nonlinear coupled mode
equations by properly 1dent1fy1ng the contributions to the
perturbing polarization P'(r). Linear contributions to the
perturbing polarization arise from the overlap of the modal
field with an adjacent waveguide and from the presence of
any mode of the adjacent guide. Nonlinear contributions arise
due to the mode interacting with the material by itself or in
conjunction with a mode in the adjacent waveguide.

We wish to analyze the case where two single-mode wave-
guides are placed in close proximity and configured to run
parallel over an interaction length (see Fig. 1). Equation
(6) is used to predict the behavior of the mode in each wave-
guide; one finds that
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-idafdz = Q1a + Qya' +(Qslal® +2041d' ) a )
and '

~10d'[0z = Q;a' + Qra + (Q31d'|? +204al?)d’ (8)

where ¢ and 4’ are the complex normalized amplitudes of the
modes and Q,-Q, are the coupling coefficients defined as
follows:

0, = 4P dxdy §|E|?, 9)

0, = “, dx dy (¢ +8) EE'™, (10)

0, =@—’i"fdxdy B, a1
nP,

0, = e f dx dy |EPIE'P (12)
S

where £ and E' are the electric f1e1d of the two modes € is
the unperturbed susceptibility of one gulde § is the linear
perturbmgususceptlblhty of that guide, and n, is the nonlinear
refractive index [6]. In (7) and (8), the two coupled wave-
guides are assumed to be identical. Failing to make this as-
sumption_introduces a phase mismatch term into Q,. The
spatial dependence of O, makes the analysis very compli-
cated and the results cannot be expressed as standard elliptic
integrals. We also choose the relative phase of E and E' so
that the coefficient Q5 is real [see (10)].

As was discussed above, one can identify each term in
(7) and (8) with a particular contribution of the perturbing
polarization. The terms involving Q, arise from the overlap
of the mode field with the adjacent waveguide, they serve only
to modify the propagation constant of the mode. The (@,
terms arise because of the presence of a mode in the adjacent
guide and lead to linear coupling between the waveguides.
Terms with Qs are the strongest nonlinear terms and arise
from the nonlinear interaction of a mode with itself. They
are equivalent to the self-phase-modulation and self- focusmg
terms in free space nonlinear optics. The terms involving O,
arise from the nonlinear interaction of one mode with the
mode in the adjacent guide. In general, there are additional
nonlinear terms. These additional terms all have overlap
integrals of the form [dx dyE - E'*|Ef?, and are orders of
magnitude smaller in the cases of interest.

To analyze (7) and (8), we make the following substitutions:

a:Aei(¢+le) (13)
and
d =A4'¢9* %) (14)

where 4, A’, ¢, and ¢’ are real functions of z, Substituting
(13) and (14) into (7) and (8) gives four real equations for the
four unknowns. From these four equations we find two con-
stants of the motion, the total power

P,=4%+A" (15)
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and
=444’ cos (¥) - £Q3Q"—2Q‘QAZA’2 (16)
2
where
T=¢-¢. 17

At this point it is possible to derive an equation for the power
propagating in one waveguide

(8P/3z)* = Q, {40, - T'(Q3 - 2Q4)} P(P; - P)
= 47203 - (Qs - 204)*P2(P; - P). (18)

Equation (18) integrates as an elliptic integral [7]. The solu-
tion is

Pz)=1p.+ —&J%P" s {Z VAP ¥ 57 + Fgolm)lm}
(19)
where
Z=0,z (20)
(YP,)? =-4P? + PP, - )+ 2P, /P, - 21P,  (21)
(8P.)? = 4P} - 2P, (P, - I") + 2P, /P, - 2TP, 22
sin® (80) = 53 3;(3)6—2 )%i(]oz) jzf;’j /216} @)
m=58%/(v* +52) (24)
and P, is the critical power defined by
Pe =40, [(Qs - 204). @5

F(¢,lm) is an elliptic integral of the first kind, and sd (6 |m)
is a Jacobi elliptic function [7]. There is a special case, of
interest to optical data processing, for which these equations
simplify. This is the case where all of the power is initially
launched into one waveguide, i.e., P(0)=P;. In this limit,
I' =0 and (19) becomes

Py(2) =P (0){1 +cn(2Z|m)}/2 (26)
where
m = P(0)* /P2 27

and cn(¢|m) is a Jacobi elliptic function [7]. This elliptic
function is periodic with a period of 4K(m), where K{(m) is
a complete elliptic integral of the first kind [7]. In the limit
of very small input intensities m ~ 0, (26) becomes

Py(Z)=P,(0) {1 + cos (22)}/2. (28)

This is the well-known solution for a linear coherent coupler.
The optical power transfers back and forth between the wave-
guides with a transfer length of z =#/20Q,. As the input
intensity is increased, the parameter m grows. This leads to
increases in K(m), and hence, the period of the elliptic func-
tion cn (¢ |m).

Equation (26) is plotted in Fig. 2; the figure shows the
amount of power that remains in waveguide 1 plotted as a
function of position along the coupler. Fig. 2 shows two
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Fig. 2. The amount of power remaining in guide 1 as it propagates
along the coupler. The figure shows distinctly different solutions for
input powers Py (0) < P, and for input powers >P,.

distinct types of solutions. For low input powers (P;(0) <P,),
the device acts as a conventional phase-matched coupler;
at some point (Z/m ~0.5), the light is switched from guide
1 to guide 2. This is the familiar crossed state of a phase-
matched coupler or A reversal switch, The operation of this
device is closely related to the A reversal switch. Initially,
all of the light is in guide 1, causing a nonlinear detuning of
guide 1. As the light slowly couples into guide 2, it starts
detuning that guide as well. When the power in each guide is
equal, the detuning induced in each waveguide is equivalent.
Hence, there is no net detuning between the guides. As more
power couples into guide 2, the detuning reverses, just as in a
Ap reversal switch, and drives the device into a fully crossed
state. At high input intensities (P, (0) = P,.), the device does
not go into the crossed state. This is because the detuning
induced by the nonlinear index drives the two waveguides out
of phase matching, and the 50/50 power distribution point is
never achieved; hence, the phase is not reversed and a crossed
state is not achieved.

Fig. 3 shows the input/output characteristics of several
NLCC’s. Each curve shows the normalized output of guide 1
as a function of the normalized input to guide 1 for a device
of fixed length. The two curves corresponding to Z = 7/2 and
Z =3m/[2 represent devices that are initially (low inputs) in a
crossed state. As the input is increased, some of the light is
no longer coupled into guide 2. At sufficiently large inputs,
the power remains in guide 1. These operating characteristics
would be useful for constructing optical AND gates. On the
other hand, the output of guide 2 exhibits the characteristics
of an XOR gate. The curves corresponding to Z=m and Z =
2w exhibit the same type of solution, but with the roles of
guides 1 and 2 switched.

It can be shown that

cn(2uK(m)|m) = (-1)" 29)
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Fig. 3. Output versus input for NLCC’s of fixed length.
where
n=0,1,2,3,---.

It is therefore possible to predict the powers necessary .to
operate the NLCC as an optical logic gate. Let us consider a
device that is initially (low-input intensity) in a parallel state.
That is, we choose the length

I=n/Q,(n=1,2,3,--+). (30)

By increasing the input power to a high value we must drive
the device from the parallel state into the crossed state. This is
accomplished by changing the period from 2x to 2x/(1 - 1/2n),
implying a change of K(m) from its value of n/2 at m =0 to
a value of 7/2(1 - 1/2n). Values of m and K(m) given for the
first few values of n are expressed in Table I. The last column
shows the input intensity calculated using (22). To evaluate
the actual input intensity we must evaluate the coupling coef-
ficients given by (8)~(11). To this end we assume that the
waveguide “mode” may be approximated by having a plane
wave within the guide and having zero field elsewhere. Then

05 = (8772 ny [ Mnoc) Po/A @31
and
0,=0

where A is the cross-sectional area of the waveguide. Using
(25) the critical power is given by

P, =0, A(Anyc/2n%n,). (32)

Assuming that Q, = 3.14.cm™* (0.5 cm exchange length, 4 =3
um?, A=1.06 um, n, =3.5, and n, =5 X 107'% ESU, then
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TABLE 1
n K(m) m Py(®)/P,
1 3.142 0.9690 0.985
2 2.094 0.7126 0.844
3 1.885 0.5350 0.732

the critical input power is ~10.6 W. Using values from the
table above, we find that for a 1.0 cm device (n=1) the
necessary input power is 10.5 W; for a 2.0 cm device (n = 2)
the input power is 9.0 W; and for a 3.0 cm device (# = 3) the
input power is 7.8 W. ‘
Although these powers appear quite high, it must be pointed
out that this device is capable of exceedingly fast switch times.
In fact, since the fields within the device interact in a spatially
and temporally local fashion, the switch time of this device
is not limited by propagation time. When optical pulse lengths
are shorter than the device length, several pulses can, simul-

_taneously and independently propagate through the device in a

serial fashion. The device will, in effect, be processing all of
the pulses simultaneously, In this limit the switch time of
the device will be limited only by the nonlinear response time
(~107** 5 in many materials). Switch powers can of course be
reduced by utilizing materials with larger nonlinearities (gen-
erally, also slower). Recent, nonlinearities as large as 0.1 ESU
have been observed [8]. By utilizing these materials, switch
powers of nanowatts may be achieved,

CONCLUSION

In summary we have described a simple device capable of
performing optical processing functions and very fast data
rates (~10*? bits/s). This device may be fabricated by utilizing
conventional fabrication techniques developed for integrated
optic switches and modulators.
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