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The Nonlinear Coherent Coupler

STEPHEN M. JENSEN

/ Abstract–This paper discusses the nonlinear coherent coupler

(NLCC), a device useful for optical processing, but n[ot bistable.

This device utilizes the coherent interaction of two opticaI wave-

gnides placed in close proximity. Because of the evanescent field over-
lap, these waveguides periodically exchange power. Nonlinear inter-

actions modify the exchange of power and lead tct strongly nonlinear
transmission characteristics.

INTRODUCTION

RECENTLY, there has been great interest in the possibility

of using optical devices for ultra-high-speed data process-

ing. Many devices have been studied; of these the ones receiv-

ing the greatest attention are bistable optical devices [1].

Bistability, however, is not necessary in many logic operations.

This paper discusses the nonlinear coherent coupler (NLCC),

a device useful for optical processing, but not bistable.

This device, first described in 1980 [2], utilizes the coherent

interaction of two optical waveguides placed in close prox-

imit y. Because of the evanescent field overlap, these wave-

guides periodically exchange power. Nonlinear interactions

modify the exchange of power and lead to strongly nonlinear
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transmission characteristics which may be utilized in optical

processing applications.

Fig. 1 shows a schematic of the NLCC device. The device

is simply two waveguides placed adjacently so that they will

couple to one another. The nonlinear material covers the

region of interaction between the two waveguides, This non-

linearity may be due to the intrinsic nonlinearity of the sub-

strate material, nonlinearity induced by doping of the sub-

strate material, or by overlayers of highly nonlinear materials.
We have obtained an analytic solution for the NLCC re-

sponse. To begin the analysis, we assume that the response of

the medium, evident as a polarization, may be considered in

two parts. The unperturbed linear portion PO = 47r(e - 1) ~

contains contributions from a single isolated waveguide. The

perturbing polarization ~ contains linear contributions from

a waveguide placed in close proximity and nonlinear contribu-

tions due to the nonlinear response of the material. Using

Maxwell’s equations, in Gaussian units, one finds that

-- “c-{+~xR(;’}-’%(;)VZXEt(r)+Z --#X

= 4rr7t x $%(;)

and

(1)
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NONLINEAR MATERIAL -i&z/~z = Qla + Q2a’ + (Q3 la 12+ 2Q4 kz’12) a (7)

IN, OUT, and

-iaa’/az = Qla’ + Qza + (Q31a’12 + 2Q41a12)a’ (8)
IN2 OUT2

L__. -.-– --_______J where a and a’ are the complex normalized amplitudes of the

Fig. 1. Schematic of an integrated optic nonlinear coherent coupler. modes and Q1-Q4 are the coupling coefficients defined iis

follows:

where ~t and ~Z represent the transverse and longitudinal

components of the curl operator, ~t(~) and ~t(~) are the

transverse components, of the electric and magnetic fields, c is

the speed of light in vacuum, and all the fields are assumed to

be hationic at frequency U. In (1) and (2) the perturbing

polarization ~(~) appears as a source term which modifies

the fields ~(;) and ~(~). Using the standard coupled mode

technique of expansion in ideal modes [3] - [5], (1) and (2)

may be reduced to the form

where ZJrepresents the vth ideal mode of the waveguide, up(z)

is the amplitude of the vth mode,.2 is a unit vector along the

longitudinal (propagation) direction, and the sum extends over

all bound and radiation modes of the structure. To proceed,

we must utilize the orthonormalit y relation for the waveguide

modes

where the asterisk indicates a complex conjugate, P. is the

normalization power, and 6VV’ is the Kronecker delta function.

By using the orthonormality relation, (3) and (4) may be

reduced to

J-iaav(z)/az =; dx dy i?’(;)*” P’(;).
o

(6)

By using (6) one may derive the nonlinear coupled mode

equations by properly identifying the contributions to the

perturbing polarization ~(~). Linear contributions to the

perturbing polarization arise from the overlap of the modal

field with an adjacent waveguide and from the presence of

any mode of the adjacent guide. Nonlinear contributions arise

due to the mode interacting with the material by itself or in

conjunction with a mode in the adjacent waveguide.

We wish to analyze the case where two single-mode wave-

guides are placed. in close proximity and configured to run

parallel over an interaction length (see Fig. 1). Equation

(6) is used to predict the behavior of the mode in each wave-

guide; one finds that

Q2=$
J

dxdy(e+8)EE’*,
o

fion2 u
Q3=~

J
dx dy IE14 ,

0

non2 cd
Q4=~

J
dx dy IE121E’12

0

(lo)

(11)

(12)

where ~ and ~ are the electric field of the two modes, e is

the unperturbed susceptibility of one guide, 6 is the linear

perturbing susceptibility of that guide, and n2 is the nonlinear

refractive index [6]. l[n (’7) and (8), the two coupled wave-

guides are assumed to be identical. Failing to make this as-

sumption, introduces a phase mismatch term into Q2. Tine

spatial dependence of Q2 makes the analysis very compli-

cated and the results cimrlot be expressed as standard elliptic

integrals. We also choose the relative phase of E and E’ so

that the coefficient Q2 k real [see (10)].

As was discussed above, one can identify each term in

(7) and (8) with a particular contribution of the perturbing

polarization. The terms involving QI arise from tfie overlap

of the mode field with the adjacent waveguide, they serve only

to modify the propagaticm constant of the mode. The Q2

terms arise because of the presence of a mode in the adjacent

guide and lead to linear coupling between the waveguides.

Terms with Q3 are the strongest nonlinear terms and arise

from the nonlinear interaction of a mode with itself. They

are equivalent to the self-phase-modulation and self-focusing

terms in free space nonlinear optics. The terms involving Q,4

arise from the nonlinear interaction of one mode with the

mode in the adjacent guide. In general, there are additional

m-inlinear terms. These additional terms all have overlap

integrals of the form ~ dx dyE” E’ * IE 12, and are orders of

magnitude smaller in thle c:asesof interest.

To analyze (7) and (8), we make the following substitutions:

~ =~e~(O+QIZ) (13)

and

~r =A’eK@’+ QIZ) (14)

where .4, A’, @, and ~’ are real functions of z. Substituting

(13) and (14) into (7) ancl (8) gives four real equations for the
four unknowns. From these four equations we find two con-

stants of the motion, the total power

Pt=A2 +A’2 (15)
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and

r = 4AA’ cos (v)-
2(Q3 - 2Q4) ~2A,2

Q2
(16)

where

v=@-@’. (17)

At this point it is possible to derive an equation for the power

propagating in one waveguide

(aP/&)2 = Q2 {4Q2 - r(Q, - 2Q.)} P(P, - P)

- ~ I’z Q] - (Q3 - 2QQ)2P2(Pt - P)2 . (18)

Equation (18) integrates as an elliptic integral [7]. The solu-

tion is

(19)

where

Z=QZZ (20)

(Ypc)2 = -4P: + wc(pc - r)+ 2PC ~p~ (21)

(8PC)2 = 4P? - 2PC(PC- r)+ w, ~Pi (22)

(’y’ + (s’) {P(o) - +Pt}’
sin2 (@O)= z

8 {[P(O)- ;Pt]2 +P~72/16}
(23)

m =82/(y2 +82) (24)

and PC is the critical power defined by

PC = 4Q2 I(Q3 - 2Q4 ). (25)

F(OO Im) is an elliptic integral of the first kind, and sd (0 [m)

is a Jacobi elliptic function [7]. There is a special case, of

interest to optical data processing, for which these equations

simplify. This is the case where all of the power is initially

launched into one waveguide, i.e., P(0)= Pt. In this limit,

17= O and (19) becomes

PI(Z) =Pl (0) {1 + crr(2Zlm)}/2 (26)

where

m = P(O)’ /P~ (27)

and en (@Im) is a Jacobi elliptic function [7] . This elliptic

function is periodic with a period of 4K(m), where K(m) is

a complete elliptic integral of the first kind [7] . In the limit

of very small input intensities m = O, (26) becomes

PI (z)= PI (o) {1 + Cos (22)}/2. (28)

This is the well-known solution for a linear coherent coupler.

The optical power transfers back and forth between the wave-

guides with a transfer length of z = rr/2Q2. As the input

intensity is increased, the parameter m grows. This leads to

increases in K(m), and hence, the period of the elliptic func-

tion cn (@Inz).

Equation (26) is plotted in Fig. 2; the figure shows the
amount of power that remains in waveguide 1 plotted as a

function of position along the coupler. Fig. 2 shows two

Zh

Fig. 2. The amount of power remaining in guide 1 as it propagates
along the coupler. The figure shows distinctly different solutions for
input powers F’l (0) < Pc and for input powers >Pc.

distinct types of solutions. For low input powers (Pl (0) <PC),

the device acts as a conventional phase-matched coupler;

at some point (Z/n w 0.5), the light is switched from guide

1 to guide 2. This is the familiar crossed state of a phase-

matched coupler or A~ reversal switch. The operation of this

device is closely related to the AIJ reversal switch. Initially,

all of the light is in guide 1, causing a nonlinear detuning of

guide 1. As the light slowly couples into guide 2, it starts
detuning that guide as well. When the power in each guide is

equal, the detuning induced in each waveguide is equivalent.

Hence, there is no net detuning between the guides. As more

power couples into guide 2, the detuning reverses, just as in a

A~ reversal switch, and drives the device into a fully crossed

state. At high input intensities (Pl (0) > PC), the device does

not go into the crossed state. This is because the detuning

induced by the nonlinear index drives the two waveguides out

of phase matching, and the 50/50 power distribution point is

never achieved; hence, the phase is not reversed and a crossed

state is not achieved.

Fig. 3 shows the input/output characteristics of several

NLCC’S. Each curve shows the normalized output of guide 1

as a function of the normalized input to guide 1 for a device

of f~ed length. The two curves corresponding to Z = rr/2 and
Z = 3n/2 represent devices that are initially (low inputs) in a

crossed state. As the input is increased, some of the light is

no longer coupled into guide 2. At sufficiently large inputs,

the power remains in guide 1. These operating characteristics

would be useful for constructing optical AND gates. On the

other hand, the output of guide 2 exhibits the characteristics

Of an XOR gate. The curves corresponding to Z = n and Z =

2rr exhibit the same type of solution, but with the roles of
guides 1 and 2 switched.

It can be shown that

cn(2nK(m) Im) = (- 1)” (29)
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Fig.3. Output versus input for NLCC’soffixed length.

where

n = 0,1,2, 3,”.”.

It is therefore possible to predict the powers necessary.to

operate the NLCC as an optical logic gate. Let us consider a

device that isinitirdly (low-input intensity) in a parallel state.

That is, we choose the length

l=rz/Q2(n =1,2,3, ...). (30)

By increasing the input power to a high value we must drive

the device from the parallel state into the crossed state. This is

accomplished by changing the period from 21Tto 2n/(1 - l/2n),

implying a change of K(m) from its value of n/2 at m = O to

a value of n/2(1 - 1/2n). Values of m and K(m) given for the

first few values of n are expressed in Table I. The last column

shows the input intensity calculated using (22). To evaluate

the actual input intensity we must evaluate the coupling coef-

ficients given by (8)-(1 1). To this end we assume that the

waveguide “mode” may be approximated by having a plane

wave within the guide and having zero field elsewhere. Then

Q3 = (8n2n~/X%c)Po/A

and

Q.=0

where A is the cross-sectional area

(25) the critical power is given by

PC = Q2 A(Anoc/2n2n2 ).

(31)

of the waveguide. Using

(32)

Assuming that Qz = 3 .14cm-l (0.5 cm exchange length, A = 3
Vmz, X = 1.06 pm, no = 3.5, and irz = 5 X 10-10 ESU, then

1s71

TABLE I
.—

n K(m) m PI (o)/Pc

1 3.142 0.9690 0.985
2 2.094 0.7126 0.844
3 1.885 0.5350 0.732

the critical input power is -10.6 W. Using values from the

table above, we find that for a 1.0 cm device (n = 1) the

necessary input power is, 10.5 W; for a 2.0 cm device (n = 2)

the input power is 9.0 W; and for a 3.0 cm device (n =3) the

input power is 7.8 W.

Although these powers appear quite high, it must be pointed

out that this device is capable of exceedingly fast switch times.

In fact, since the fields within the device interact in a spatially

and temporally local fashion, the switch time of this device

is not limited by propa~gation time. When optical pulse lengths

are shorter than the clevice length, several pulses can, simul-

taneously and independently propagate through the device in a

serial fashion. The device will, in effect, be processing all of

the pulses simultaneously. In this limit the switch time of

the device will be limitedl only by the nonlinear response time

(-10-14 sin many materials). Switch powers can of course be

reduced by utilizing materials with larger nonlinearities (gen-

erally, also slower). Recent, nonlinearities as large as 0.1 ESU

have been observed [8]. By utilizing these materials, switch

powers of nanowatts may be achieved.

CONCLUSION

In summary we have clescribed a simple device capable of

performing optical processing functions and very fast data

rates (-1 012 bits/s). This device may be fabricated b y utilizing

conventional fabrication techniques developed for integrated

optic switches and modulators.
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